
Journal of Mathematical Chemistry 7(1991)111 - 133 111 

E N U M E R A T I O N  OF O R G A N I C  R E A C T I O N S  BY C O U N T I N G  SUB- 
STRUCTURES OF IMAGINARY TRANSITION STRUCTURES. IMPORTANCE 
OF ORBITS GOVERNED BY COSET REPRESENTATIONS 

Shinsaku FUJITA 
Research Laboratories, Ashigara, Fuji Photo Film Co., Ltd., Minami-Ashigara, Kanagawa, 
Japan 250-01 

Abstract 

Two methods for the enumeration of organic reactions are presented in order to take 
obligatory minimum valencies of a given skeleton into consideration. The first method 
is a generalization of P61ya's theorem, in which the transitivity of the positions of the 
skeletons is explicitly considered. Thus, a permutation representation acting on the 
positions is reduced into coset representations (CRs). In accord with this reduction, unit 
cycle indices derived from the CRs construct a generalized cycle index. The second 
method is based on the subduction of the coset representations. This contains useful 
concepts such as unit subduced cycle indices and subduced cycle index that afford a 
new type of generating functions. 

1. In t roduct ion  

The systematic enumeration of reactions of inorganic complexes has been 
thoroughly investigated by several authors in terms of effective mathematical formu- 
lations [1 ]. On the other hand, mathematical approaches to the systematic enumeration 
of organic reactions have long remained unchallenged, whereas there have appeared 
a vast number of manual enumerations and classification methods of organic 
reactions [2]. This is mainly because there have been no effective formulations 
suitable to mathematical treatments. In previous papers [3,4], we have formulated 
individual organic reactions as imaginary transition structures (ITSs) having three 
kinds of  bonds (par-bonds, out-bonds and in-bonds) [5]. A set of individual reactions 
is thereby classified into a reaction type which is designated as a reaction-center 
graph (RCG) or a reaction graph (RG) abstracted from such ITSs. This formulation 
allows us to regard the enumeration of organic reactions as the counting of  RCGs 
or RGs. Thus, the RGs are counted by placing par-bonds on the edges of  a basic 
reaction graph (BRG) as a parent skeleton [6]; the RCGs are enumerated by substituting 
appropriate atoms for the vertices of an RG as a parent [7]. 

In the enumeration of the RCGs, we have encountered the restriction due to 
obligatory minimum valencies (OMVs) [8]. The consideration of the OMV requires 
careful attention to the transitivity of positions contained in a skeleton. It affords 
more general results than those of conventional methods. Thus, we have already 
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reported an enumeration of reaction types under the OMV restriction [7]. As a 
continuation of this work, the present paper [9] deals with an extension of P61ya's 
theorem to more general cases in which the positions of a given skeleton construct 
one or more orbits governed by coset representations (CRs). Although the mathematical 
foundation of this method has been reported elsewhere [10], its scope and applications 
to reaction enumerations have not been investigated; these are the first issues of  the 
present paper. Another issue of the present report is an application of  a novel theorem 
that has been developed for the enumeration of organic compounds [11]. Such an 
application to reaction enumerations indicates the merits of  this theorem. Both of  
these methods are based on the concept of coset representations (CRs), which has 
attracted little attention in chemical enumerations. We also discuss the relationship 
between the two methods and emphasize the importance of CRs. We will restrict 
ourselves to problems in chemistry, and our results will be applicable to other 
combinatorial enumerations [12-14].  

2. Formula t ion  

2.1. GLOSSARY FOR THE ITS (IMAGINARY TRANSITION STRUCTURE) APPROACH 

This glossary is devoted to the definition of terms and acronyms used in the 
present approach [3]. 

An imaginary transition structure (ITS) is defined as a structure in which molecules 
in the starting stage of a given reaction are superposed onto the corresponding 
products (contained in the product stage), and three kinds of bonds (par-bonds, out- 
bonds, and in-bonds) are distinguished. 

The term par-bond ( - )  denotes a bond that appears both in one of  the starting 
molecules and in one of the products. In other words, the par-bond is kept intact 
during the reaction. An out-bond ( - I I - )  is defined as a bond that appears only in 
one of the starting molecules. This means that the out-bond is a bond cleaved during 
the reaction. The term in-bond ( -  o -)  is used to refer to a bond that appears only 
in one of the products. In other words, the in-bond is a bond formed during the 
reaction. 

A reaction-center graph (RCG) is defined as a substructure (or subgraph) 
of such an imaginary transition structure (ITS), where all atoms and bonds (par-, 
out-, and in-bonds) participating in a reaction are selected. A reaction graph (RG) 
is defined as a simplified reaction-center graph in which all of the atoms are replaced 
by abstract balls (or unmarked vertices). Note the distinction between the RCG and 
the RG. For example, the RCG of a Cope rearrangement is different from that of  a 
Claisen rearrangement; however, they afford the same RG. A basic reaction graph 
(BRG) is defined as a simplified reaction graph in which all par-bonds are omitted. 

The obligatory minimum valency (OMV) is a valency that is permitted for a 
vertex of  an RG. For example, if the OMV of a vertex is equal to 3, the vertex can 
take an atom having tri- or more-valency (e.g. C and N), but cannot take a mono- 
or di-valent atom such as H and O. 
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A projection to the starting stage (PS) is defined as an operation that deletes 
all in-bonds. This operation affords the molecules o f  the starting stage. A projection 
to the product stage (PP) is defined as an operation that deletes all out-bonds, which 
gives the corresponding products. 

2.2. CLASSIFICATION AND ENUMERATION 

An imaginary transition structure (ITS) contains a reaction-center graph (RCG) 
as a substructure or subgraph. If we take no account of  atoms of  the RCG, we can 
obtain a more generic subgraph, i.e. a reaction graph (RG). For example, ITS 1 
represents a reaction belonging to a category of  Claisen's rearrangement (fig. 1). This 
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Fig. l .  ITS, RCG and RG for a [3, 3]-sigmatropic reaction. 
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is verfied by two operations, PS and PP. Thus, the deletion of  all in-bonds of 1 
(projection to the starting stage: PS) affords the corresponding starting molecule. On 
the other hand, the deletion of all out-bonds of 1 (projection to the product stage: 
PP) creates a product. The ITS 1 contains an RCG 2 that corresponds to a reaction 
type called Claisen's rearrangement. A more generic name, a [3, 3]-sigmatropic reaction, 
is assigned to the RG 3. When we take no account of  par-bonds, we obtain a basic 
reaction graph 4, which represents a mode of  bond switching. 

It should be noted that the concepts RCG and RG are distinct from each other 
in spite of  their apparent resemblance. Thus, the RCG 2 contains C50 on its vertices, 
although the five carbon atoms are not explicitly shown according to a chemist's 
convention. This RCG represents a set of  Claisen rearrangements. In contrast, each 
vertex of  the RG 3 has a ball in an abstract fashion. This RG represents a set of  [3, 3]- 
sigmatropic reactions, which involves Cope rearrangements, oxy-Cope rearrangements, 
N-analogs of the Claisen rearrangement and so on, in addition to the Claisen 
rearrangement. 

As we have shown in fig. 1, the process of abstraction (ITS --+ RCG + RG 
-+ BRG) provides a general method of classifying organic reactions, since this 
corresponds to the conventional process of constructing a reaction hierarchy, i.e. an 
individual organic reaction --+ a reaction type --+ a generic reaction type -+ a mode 
of bond switching. The reverse process (BRG -+ RG --+ RCG -+ ITS) provides a versatile 
methodology for the enumeration of organic reactions [7, 11]. 

2.3. RG-ISOMERS AND RCG-ISOMERS 

Since the concept of  ITS is an extended concept of usual chemical structure, 
all concepts in the chemical structure can be extended to apply in the ITS. Hence, 
the term isomerism is extended for the purpose of  enumerating RGs and RCGs. 

Two RGs are defined as being isomeric if they have the same BRG and the 
same number of par-bonds. For example, the RGs of fig. 2 are isomeric, since they 
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Fig. 2. RG-isomers and RCG-isomers. 
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are derived from a common basic reaction graph (BRG) by substituting four single 
par-bonds on its edges. We refer to such isomeric reaction graphs as RG-isomers. 

Two RCGs are defined as being isomeric if they have the same RG and the 
same set of atoms. For example, the RCGs of fig. 2 are isomeric, since they have 
the same formula (C4N2). We call such isomeric reaction-center graphs RCG-isomers. 

2.4. ORBITS OF A PARENT REACTION GRAPH 

We have reported the enumerations of RCGs under the influence of obligatory 
minimum valencies (OMVs) inherent to the orbits of a parent RG [7], where we have 
assigned different variables to the different orbits. However, we have taken no account 
of the correspondence between such an orbit and a coset representation. In this section, 
we will deal with this correspondence more strictly than in the previous treatment. 

In general, let G be a finite group that keeps a given parent skeleton invariant. 
The group G has an irredundant set of subgroups (]i (i = 1, 2 . . . . .  s), each of which 
is a representative selected from respective conjugate subgroups, where s denotes the 
number of such representatives. The group G thus acts on the set (A) of positions 
of the skeleton to give a permutation group PG on A. If Pc is intransitive, the domain 
A is divided into orbits. This division is accomplished by theorem 1, which is by 
Burnside [15]. 

THEOREM 1 

Any permutation representation Pc is reduced to a set of  (transitive) coset 
representations (CRs) in the form of 

$ 

PG = ~ a iG( /Gi ) ,  (1) 
i= l  

where the symbol G(/Gi) denotes a CR derived from a coset decomposition of G by 
G i [16]. The multiplicities a /a re  non-negative integers determined by solving the 
following equations: 

$ 

#j = Y,  aimij ( j  = 1,2 . . . . .  s), (2) 
i=I  

where/.tj is the mark (the number of fixed points) of Gj in Pc, and the symbol mii 
denotes the mark of Gj in G(/Gi). 

An s × s matrix or table collecting the mij's is called a table of marks for the 
G group. Such tables of marks were reported for several groups and applied to 
enumeration problems [17]. The mark (#j) of a subgroup Gj in Pc is obtained by 
counting cycles of length = 1 (invariant members) in Pc under the action of Gj. This 
task is also accomplished by counting immobile positions of the skeleton (G symmetry) 
with respect to all symmetry operations of Gj. 
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Equation (1) corresponds to the division of the domain A which affords orbits: 
Aic t (i = 1, 2 . . . . .  s and a = 1, 2 . . . . .  ai),  on which G(/Gi) acts. The length of  Aia 
is equal to the degree of the corresponding G(/Gi), i.e. I Aia I = I G I / I Gi I. 

E x a m p l e  1 (Orbits concerning six vertices in the RG 3) 

Let us work out the RG 3 representing a [3, 3]-sigmatropic reaction (fig. 3). 
We select the C 2 group to describe the symmetry of this skeleton. The six vertices 
of this skeleton are divided into three equivalence classes (A 1 = {1, 5}, A z = {2, 6}, 
and A 3 = {3, 4}), which we refer to as orbits. This division can be easily done by 
inspection. 

A1 C,N 

A2 c, N, 

5 

RG 3 

N, oA3 

Fig. 3. Orbits of a parent RG for a [3, 3]-sigmatropic reaction. 

These orbits are subject to appropriate coset representations (CRs). The assign- 
ment of each orbit to a CR is accomplished by using a table of marks [15]. This 
skeleton (3) is invariant to a permutation group, 

Pc2 = {(1)(2)(3)(4)(5)(6), (1 5)(2 6)(3 4)}. (3) 

The numbers of fixed points (#j's) are obtained easily by examining this permutation 
group as being/.tcl = 6 and/.tc~ = 0. In the present case, eq. (2) is obtained as a matrix 
expression, being 

(6 O) = ( a c ~ a c 2 )  ( 2  0 1 1" (4) 

The second matrix on the right-hand side of eq. (4) is a table of  marks for the C 2 
group. Thereby, we have ac~ = 3 and ac2 = 0. Three orbits (A1 = {1, 5}, A 2 = {2, 6}, 
and A 3 = {3, 4}) are concluded to be subject to the same CR, Ca(/C1). This fact is 
algebraically represented by 

Pc~ : 3C2(/C1 ). (5) 
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The OMV influences the mode of substitution on a given skeleton. The vertices 
of A I have OMV = 3 and, hence, cannot take less than trivalent atoms. However, the 
other positions, having OMV = 2 (A z and A3), can take bi- or more-valent atoms. 
Thus, even if the same CR governs several orbits, these orbits can take different sets 
of substituents according to their OMVs. 

Example 2 shows orbits conceming edges of a basic reaction graph (BRG). 

Example 2 (Orbits of edges in a square BRG with cross-linked phantom edges (5) 
of D 2 symmetry) 

(2 

C 

5 

Let us consider the skeleton (5) to have D 2 symmetry. Its subgroups are 
represented by C 1 = {I}, C2 = {I, C2(3) }, C~ = {/, C2(1)}, C~'= {1, C2(2)}, and D 2 
= {I, C2(3), C2(1), C2(2)}. The permutation representation (Pih) consists of  four permu- 
tations, I - (a)(b)(c)(d)(e)(f) ,  C2(3) - (a c)(b d) (e ) ( f ) ,  C2(1) - (a)(c)(b d)(e f ) ,  and 
C2(2) - (a c)(b)(d)(ef) .  When we operate every symmetry operation to this BRG, we 
obtain the number of fixed points for each subgroup by inspection, i.e., 

Pc~ = 6 ,  #c2 = 2 ,  Pc~ = 2 ,  #c~ = 2 ,  and #02 = 0 .  (6) 

These values can also be obtained by counting cycles of length = 1 in Po2 under the 
action of every subgroup. These values are introduced into eq. (2), affording 

(O~C1 /2'C2 aC~/5(C~ ~D2) 

= (6 2 2 2 0) 

l J40 0 0 1 ]  0 - 1/4 1/2 0 0 0 
- 1 / 4  0 1/2 0 = ( 0 1  1 10) .  
- 1 / 4  0 0 1/2 

1/2 - 1 / 2  - 1 / 2  - 1 / 2  

(7) 

Note that this expression uses the inverse form of  eq. (2), where the 5 x 5 matrix is 
the inverse of the table of marks for the D 2 group. The resulting row vector ( 0 1 1 1 0 )  
corresponds to the reduction represented by 
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Po2 = D2(/C2)+ D2(/C~)+ D2(/C~), 

which gives three orbits: A 1 = {e , f } ,  L~ 2 = {a, c}, A 3 = {b, d}. 

(8) 

3. I somer  enumera t ion  under  the OMV restr ict ion 

3.1. GENERALIZATION OF POLYA'S THEOREM 

In order to manipulate the OMV restriction, we explicitly consider a partition 
of positions of  a given skeleton. We then provide different sets of  weights to different 
orbits of  the skeleton. This idea requires a generalization of P61ya's theorem. Suppose 
that A = {51, 52 . . . . .  51z~1 } is a domain which contains vertices of  the skeleton and 
X = {X~, X 2 . . . . .  Xix I } is a co-domain which contains atoms or ligands. Let a finite 
group G act on A in the form of the permutation representation Pc on A. The action 
of G on A affords a partition to give Aia (i = 1, 2 . . . . .  s and a = 1, 2 . . . . .  al),  each 
of which is governed by G(/Gi) according to eq. (1). Suppose that a weight: wia(X ,) 
(for i = 1, 2 . . . . .  s, a = 1, 2 . . . . .  e~ i and r = 1, 2 . . . . .  I X I ) is assigned to each orbit 
Am. We then define a weight of a function (configuration) as follows. 

DEFINITION 1 

(Weight of function) 
$ ell 

W ( f ) = I ~  I ~  I ~  wia( f (5 ) )  (9) 
i = 1  a = l  6~Air~  

~'~'0 

for a function f :  A ~ X. 
If two functions f rand  fe : A ~ X are equivalent to each other, then W(fr)  can 

be proven to be equal to W(fE). This relation provides us with a more mathematical 
definition of  isomers, in which two functions ( f r  and f c )  are isomeric to each other 
if W(fr  ) = W(fc) and if they are not equivalent [7]. 

Each CR, G(/Gi), is a transitive permutation representation o n  Aia. We 
can separately treat every orbit governed by such a CR [7]. Suppose that 
G(/Gi)g ~ G(/Gi) corresponds to g ~ G. The cycle structure of the G(/Gi)g 
permutation is represented by the number i, of cycles of size 'r ('r = 1 to m), where 
m = I Aia I = I G I/I G~I. That is to say, 

{i] ,i2 . . . . .  ira}, (10) 

where 
m 

-r/, = m .  ( 1 1 )  
"t'= 1 

We then assign a variable s T to a cycle of length "r. Thereby, we define a unit cycle 
index (UCI) by the following statement [10]. 
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DEFINITION 2 

A unit cycle index (UCI) for  G ( / G i ) g  is represented by 

_(lot) i f  
Zg = Sir • 

• = 1 (g) 
(12) 

The superscript (ia) is concerned with the orbit Ai, ~ on which G(/Gi) acts. 

Since every CR is determined algebraically through a coset decomposition of  
G by G i, we can precalculate UCIs for the elements of the CR. Table 1 lists all of  
the CRs for the D 2 group, which are obtained by the corresponding coset decompositions. 
Table 2 collects unit cycle indices for the D E symmetry, which are easily obtained 
by the data of table 1. 

Table 1 

Coset representations for the D 2 group 

Operation D2(/C1) D2(/C2) D2(/C~) D2(/C2" ) D2(/D2) 

I (1) (2) (3) (4) (1) (2) (1) (2) (1) (2) (1) 
C20 ) (1 2) (3 4) (1) (2) (1 2) (1 2) (1) 
C2( 0 (1 3) (2 4) (1 2) (1) (2) (1 2) (1) 
C~2 ) (1 4) (2 3) (1 2) (1 2) (1) (2) (1) 

Table 2 

Unit cycle indices for the D 2 group 

Operation D2(/C1) D2(/C2) D2(/C~) D2(/C~) Dz(/D 2) 

i ~ d d d s, 
C~3~ s22 s~ s2 s2 sl 
C2o~ s~ s2 s~ s2 sl 
C2(2~ s~ s2 s2 d sl 

Table 3 

Coset representations for the D 3 group 

Operation I)3(/C I) D3(/C2) D3(/C3) D3(/D3) 

I (1) (2) (3) (4) (5) (6) (1) (2) (3) (1) (2) (1) 
C3 (t 2 3) (4 5 6) (1 2 3) (1) (2) (1) 
C 2 (1 3 2) (4 6 5) (1 3 2) (1) (2) (1) 
C2o ) (1 4) (2 6) (3 5) (1) (2 3) (1 2) (1) 
C2(2) (15)(24)(36) (12)(3) (12) (1) 
Czo ) (1 6) (2 5) (3 4) (1 3) (2) (1 2) (1) 



120 S. Fujita, Enumeration of organic reactions 

Table 3 collects all of the coset representations for the D 3 group. Table 4 indicates 
unit cycle indices for the D 3 symmetry. 

Table 4 

Unit cycle indices for the D 3 group 

Operation D3(/C1) D3(]C2) D3(/C3) D3(/D3) 

I ~ S]l s] s 1 
c~ ~ ~ s] s~ 
c~ s~ ~ s] sx 
C~ l) s32 sis2 sx si 

C2(~ ~ sis2 s2 sl 

C~3 ) s~ sis 2 s 2 s I 

By using the UCIs (z~m)), we obtain the definition of a cycle index [10]. 

DEFINITION 3 

(Cycle index) 

• } I-I 11 .o, C l ( P G ; S ( ~ ' a ) ) =  IGI g i=1 ~=1 Zg . 
cxl ,~0 

(13) 

This definition is essentially equivalent to P61ya's cycle index. However, this 
has some advantages so that the UCIs in eq. (13) can be precalculated and tabulated, 
as shown in tables 2 and 4, and so that this equation takes OMVs into consideration. 

We can obtain the following theorem, which is a generalization of P61ya's 
theorem. The proof has been reported elsewhere [10]. 

THEOREM 2 

The number (Ao) of configurations with a weight W o is obtained in terms of 
a generating function: 

~.,AoWo Cl(Ps -('~)' = ;a~ ;, (14) 
0 

where the corresponding figure-inventories are represented by 

IXl 
s(ia) = ~, w~(x~)' .  (15) 

r=l 
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3.2. THE FIRST PROCEDURE FOR THE ENUMERATION OF ORGANIC REACTIONS 

A procedure for the enumeration in terms of the above mentioned method is 
summarized as follows: 

(1) determination of the symmetry G of a parent skeleton; 

(2) the counting of fixed points (marks) in the G-set of the skeleton on each operation 
of the symmetry G; 

(3) determination of orbits of the G-set and assignment of the corresponding CRs 
by means of eqs. (1) and (2); 

(4) citation of unit cycle indices (UCIs) from a table of UCIs (e.g. tables 2 
and 4) and construction of a cycle index in accord with definition 3; and 

(5) introduction of figure-inventories to the variables of the cycle index 
(theorem 2). 

The advantages of the present procedure stem mainly from step (4) because 
of precalculated UCIs. This comes from the fact that they are independent of any 
particular G-set but dependent only upon the CRs. The full tabulation of UCIs for 
all point groups is a reasonable task, and will be reported elsewhere. 

The following example 3, concerning a parent BRG with phantom edges, is 
a re-investigation of a previous result [7a] by means of precalculated UCIs. This 
example shows an OMV restriction in the case of an edge substitution problem. 

Example 3 (A square BRG with cross-linked phantom edges (5) of D 2 symmetry) 

Suppose that each pericycle edge (a, b, c, or d) of the BRG 5 can take single 
or double par-bonds. On the other hand, each phantom edge (e or f )  can take any 
of single, double, and triple par-bonds. In example 2, we have already obtained the 
orbits of 5, i.e. ,51 = {e,f},  A 2 = {a, c}, and A 3 = {b, d}. These orbits are subject 
to the CRs appearing on the right-hand side of eq. (8). By using the columns of 
D2(/C2), D2(/C ~) and D2(/C~') in table 2, definition 3 (eq. (13)) affords the following 
cycle index: 

2 (1) 2 (2) 2 CI(PDz;sO),s(2),s (3)) = ( l / 4 ) ( ( s l )  (Sl) (sl)(3)+ ($2)(1)($2)(2)($2)(3) 

+ ($2)(1)($2)(2)($2)(3)+ ($2)(1)($2)(2)($2)(3)). (16)  

The superscripts (1) to (3) denote the correspondence to A 1, A 2, a nd  A 3. We select 
a co-domain: X = {9, - ,  =, =} for substitution on the edges of 4. Since A 1 can take 
a bond selected from single ( - ) ,  double (=), and triple ( - )  par-bonds, we adopt the 
weights: 

wl (~)  = 1, W l ( - ) = x ,  w l ( = ) = y ,  w l ( ~ ) = z  for A 1. 
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On the other hand, orbits A 2 and A 3 a r e  incapable of taking triple par-bonds. Hence, 
we assign the weights: 

WE(Q~ ) = l ,  w 2 ( -  ) = x, for A 2, 

and 

w3(~) = 1, w 3 ( - ) = x ,  for A 3. 

W2(= ) = y, w2(=) = 0 

w3(= ) =y, w3(=) = 0 

and 

s(~l) = l + x ~ + y ~ + z  ~ for A 1 , 

s(~ 2)= 1 + x Z + y  z for A2, 

s(~ 3) = 1 +xZ+y z for A3. 

These figure-inventories are introduced into the cycle index (eq. (16)). Theorem 2 
provides a generating function: 

~ A o W o  = CI(Po2; 1 +x~+ y~+ z ~, 1 +x~+ y ~, 1 +x~+ y ~) 
0 

= ( 1 / 4 ) ( ( l + x + y + z ) 2 ( l + x + y ) 4 + ( l + x + y + z ) Z ( l + x 2 + y 2 )  z 

+ 2(1 +x2 +y2 + zZ)(1 + x2 +y2)(1 + x + y )  2) 

= x 6 + 3xSy + xSz + 3x 5 + 6x4y 2 + 3x4yz + 9x4y + X4Z 2 

+ 3X4Z+ 6X 4 + 8x3y 3 + 6x3y2z+ 18x3y 3 +2x3yz 2 

+ IOx3yz+ISx3y+2x  3z 2 + 6 x 3 z + 8 x  3+6x2y 4 

+ 6xZy3z+ 18x2y 3 + 3xZy2z 2 + 16xZy2z+ 27x2y 2 

+ 4x2yz 2 + 16xZyz+ 18xZy + 3X2Z+ 6X2Z+ 6X 2 

+ 3xy 5 + 3xy4z + 9xy 4 + 2xy3z z + IOxy3z+ 18xy 3 

+ 4xy2z 2 + 16xyZz + 18xyz 2 +4xyz 2 + IOxyz+ 9xy 

+ 2XZ 2 + 3XZ + 3X +y6 +y5 z + 3y5 +y4z2 + 3y4z 

+ 6y 4 + 2y3z 2 + 6y3z + 8y 3 + 3y2z 2 + 6yZz + 6y 2 

+ 2yz 2 + 3yz + 3y + Z 2 +Z + 1. (17) 

Hence, we determine figure-inventories: 
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The coefficient of xmymz e3 indicates the number of isomers with P l single, P2 double, 
and P3 triple par-bonds. For example, the coefficient ofx 4 shows that there are 6 RG- 
isomers having four single par-bonds, which are listed in fig. 4. In terms of PS and 
PP operations, we find the corresponding reaction diagrams, which are also illustrated 
on the right-hand side of fig. 4. 

RG reaction d iagram 

K 

i ,  

Fig. 4. RGs based on 5 and the corresponding reaction diagrams. 

4. Enumeration by means of unit subduced cycle indices 

4.1. UNIT SUBDUCED CYCLE INDICES, SUBDUCED CYCLE INDICES, AND CYCLE INDICES 

A subduced representation (SR), denoted by G(/G/)$ Gj, is constructed by 
selecting such elements of G(/Gi) that correspond to those of a subgroup Gj. Obviously, 
this SR is a permutation representation of Gj. Although the original CR G(/G i) is 
transitive, the resulting SR (G(/Gi) $ Gj) is intransitive in general. Since theorem 1 
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is applicable to this case, the SR G(/Gi) $ Gj is again reduced into the sum of the 
CRs for Gj, i.e. 

vj 
GC/GI) $ Gj = ~ /-'ka(ij)r'uj t~u k''~(j)'J, (18) 

k = l  

where the G~J/'s (k = 1, 2 . . . . .  vj) are the subgroups of  G i. The multiplicities fl~ij) 
(k = 1, 2 . . . . .  vj) are calculated by means of equations equivalent to eq. (2) [ l la ] .  
Since the Aia orbit is subject to the CR G(/G/), the subduction divides the Aia orbit 

^ (ia) into suborbits ~j,~/3 (/3 = 1, 2 . . . . .  fl~ij~), each of which is subject to Gi(/G~J)). Note 
that A}~%! cor responds  to a set of  cosets contained in a (Gi, Gj)-double coset. 
The sum Y.~{_ 1/3}:'~) denotes the total number of such suborbits, which can be proven 
to be equal to the number of (G i, G~)-double cosets. 

• - ( i a )  If we assign a dummy vanable s4. k to each of the suborbits 

^ ( ia ) .  ) 
1 , 2  . . . . .  p2ii  , 

a set of fl(ij) of these orbits corresponds to a term 

~dj~ / , 

where dj~ = I Gil / I  G~/~ I. Since this term is concerned with the kth CR (Gj(/G(kJl)), 
the multiplication over all k affords a unit subduced cycle index (USCI) for the orbit 
(Aia). Hence, we arrive at the following definition [11]. 

DEFINITION 4 

(Unit subduced cycle index) 

The unit subduced cycle index for G(/Gi) $ Gj is represented by 

vj . (0") 
~(ia)~ ( ~(' a)'~/~k (19) Z(G(/G/)  .1, Gi ;od k ~= I-I wd~ / 

k= l  

f o r / =  1,2 . . . . .  s and j =  1,2 . . . . .  s, 

in which the superscript (ict) is concerned with the suborbit Aia" 

Table 5 is a full list of  unit subduced cycle indices (USCIs) of the D 2 group. 
The multiplication of USCIs over a and i affords the definition of a subduced cycle 
index (SCI) for every sub-symmetry (Gj). 
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Table 5 

Unit subduced cycle indices for the D 2 group 

$ C t $ C 2 $ C~ $ C~ $ D 2 

D2(/C 2) s 2 s] s 2 s 2 s 1 

O~(/C~) s] s2 s] s2 s2 
D2(/Ci') s] s 2 s 2 s] s 2 
Dz(/D2) sl sl sl Sl sl 
X~= ~ mji 1/4 1/4 1/4 1/4 0 

DEFINITION 5 

(Subduced cycle index) 

The subduced cycle index for Gj is represented by 

$ a l  

• e(ic~)~ ,,(ic0, t . . Zl(Gj,°a~k ,=  I-I I-[ Z(G(/Gi) ' l 'Gj;°aik  , for j =  1,2, . , s .  
i=1 a=l 

a i  ~ 0  

(20) 

In terms of definition 5, we have obtained the generating function ofpo ~ in the 
form of the following theorem [1 la]. 

THEOREM 3 

Let po i be a mark for calculating the number (Ao~) of configurations with a 
symmetry of Gi and a weight W o. A generating function for calculating the mark po i 
is expressed by 

~.~po i Wo = ZI(Gj" o(ic~)~ (21) , °d j k  1,  
0 

wherein the right-hand side is substituted by 

IXl 
~(ic0 -4k = wic~ (X,) . ~djk ~ (22) 

r =  1 

Let Aoi be the number of configurations with a symmetry of G i as well as a 
weight o f W  o. The derivation of Aoi from the values of Po. is mathematically equivalent 
to that of  ~. from #i. Hence, eq. (2) can be converte~ to 

$ 

Ao, = ~., Poi~nji , (23) 
j = l  
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in terms of the inverse of a mark table. Equation (23) is summed over all G i to give 
the total number of orbits A o = ~ =  : Aoi. We then construct a generating function 
concerning A o. As a result, we end up with the following theorem [10]. 

THEOREM 4 

A generating function for the total number of orbits is represented by 

~ .~AoWo= ~_~nji Zl(Gj;s~.ak)), (24) 
0 j = l  i=1  

oCia) where oa;k is represented by eq. (22). 

The right-hand side of eq. (24) is a novel generating function that is based on 
the concept of "subduced cycle index". We call this function a cycle index, which 
is defined as: 

DEFINITION 6 

A cycle index for the group G is represented by 

CI(G ; oa~ k : - ~zji Z I (Gj  ; o4. k j. (25) 
)=i i=1 

This cycle index can be proven to be equal to eq. (13), which is drawn from 
P61ya's theorem [10]. 

3.3. THE SECOND PROCEDURE FOR THE ENUMERATION OF ORGANIC REACTIONS 

Theorem 4 provides a new method of enumeration. A procedure for this method 
contains the following steps: 

(1) determination of the symmetry G of a parent skeleton; 

(2) counting of fixed points (marks) in the G-set of the skeleton on each operation 
of symmetry G; 

(3) determination of CRs by means of eqs. (1) and (2); 

(4) use of USCIs (definition 4) to the CRs and construction of an SCI for every 
subgroup in terms of definition 5; 

(5) construction of a cycle index (CI) by definition 6; and 

(6) introduction of figure-inventories into the CI according to theorem 4. 

The following examples illustrate the procedure. These examples also reveal 
flexibilities of the present method, which allow us to treat various modes of reduction. 
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Example 4 (The square BRG 5 of D 2 symmetry) 

This example is the reexamination of the skeleton discussed in example 3. The 
inverse of  the mark table of D 2 (example 2, the 5 x 5 matrix in eq. (7)) gives 

$ 
~ m j i  = 1/4 f o r C 1 , C 2 , C ~ ,  and C~'; and 
i--1 

= 0 for D 2 

by summing the elements of each row. These values are listed at the bottom of  
table 5. The reduction discussed in example 3 allows us to use the data of table 5 
(columns D2(/C2), D2(/C~.) and D2(/C~')). Hence, the application of  definition 6 to 
this case provides 

CI(PD 2","do(l) '°d°(2) 'Od°(3)" = (1/4) ((sT)(1 )(s 2 )(2)($2 )(3) + (Sl 2 )(1 )(S2 )(2)(S 2 )(3) 

+ ($2)(1)($2)(2)($2)(3)+ (S2)(1)(S2)(2)(S2)(3)). (26) 

The superscripts (1) to (3) denote the correspondence to A 1, A 2 and A 3. This cycle 
index is identical to that of example 3. 

Example 5 (A hexagonal BRG 6 of D 3 symmetry) 

f (2 

ct c 
6 

Let us consider that BRG 6 has D 3 symmetry. We have previously 
discussed this problem [6]. The present example deals with an application of  
the new method. The subgroups of the D 3 group are represented by C1 = {I}, 
C 2 = {I, C20)}, C 3 = {l ,C 3,C~}, and D 3 = {1, C 3,C~,C20 ),C2(2),C2(3)}. The 
permutation representation (P03) consists of six permutations, I - (a ) (b) (c ) (d) (e ) ( f ) ,  
C 3 - (a c e)(b d f ) ,  C 2 - (a e c ) (b fd) ,  C2(1) - (a)(c e)(d)(bf) ,  C2(2) - (a c)(e)(b)(df) ,  
and C2(3) - (a e)(c)(bf)(d) .  Table 6 collects the data for the D 3 symmetry. 

Consider that each edge can take a single par-bond or a double par-bond. The 
marks (/.ty) are obtained by counting fixed edges during the operations of each sub- 
symmetry: 
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Table 6 

Unit subduced cycle indices for the D 3 group 

,~ C 1 ,J, C z $ C a ,,~ D 3 

o3(/c / s 6 s32 s6 
D3(/Cz) s] sis 2 s 3 s 3 

D3(/C3) s] s 2 s 2 s 2 

D3(f03) sl sl sl sl 
~'i= lmii 1/6 1/2 1/3 0 

# c l  = 6 ,  #cz  = 2 ,  #c3 = 0 ,  and /.tD3 = 0 .  (27) 

We then write down eq. (2) for this case, i.e. 

(OCc~ a c 2 a c 3 a D 3 ) =  (6 2 0 O) 

1/6 0 0 
- 1 / 2  1 0 
- 1 / 6  0 1/2 

1/2 -1  - 1 / 2  

0 
0 
0 = (0 2 0 0), 

1 

(28)  

where the 4 x 4 matrix is the inverse of the mark table of the D 3 group. This solution 
indicates a reduction into two coset representations in the form of 

PD3 = 2D3 (/C2).  (29) 

Thus, the edges of the skeleton are divided into two orbits: 

~1 = {a,c ,e}  and k 2 = {b, d, f } ,  

both of which are subject to the same CR. According to eq. (29), we twice use the 
row of D3(/C 2) of  table 6, in accord with definition 6. We thus obtain a cycle index: 

CI(PD3; Sd) = (1/6)S31S~ + (1/2)Sl $2SIS2 + (1/3)S3S3 

= (1/6)(s 6 + 3s2s~ + 2s32). (30)  

The coefficient of  each term is taken from the bottom of table 6, which is the sum 
of the corresponding row of the inverse matrix appearing in eq. (28). Equation (30) 
is identical to the previous result that was derived by P61ya's theorem [6]. We select 
a co-domain: X = { 9 , - ,  "-- }. In this example, we consider a single pattern of substitution 
at each edge. Hence, we determine a single set of  weights: 
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w ( ~ ) =  1, w ( - ) = x ,  and w ( = ) = y ,  

which affords a figure-inventory: 

sa= 1 + xa + y d. 

Theorem 4 yields the following generating function. 

Z A o W  ° = CI(D3; 1 + xa + ya) 
o 

(31) 

= (1 /6 ) ( (1  + x + y ) 6 + 3 ( 1  + x + y ) 2 ( 1  + x 2 + y 2 ) + 2 ( 1  + x 3 + y 3 )  2) 

= x 6 + 2xSy + 2x 5 + 4x4y 2 + 6x4y + 4x 4 + 6x3y 3 

+ 12x3y 2 + 12x3y + 6x 3 +4x2y  4 + 12x2y 3 + 18x2y 2 

+ 12x2y + 4x 2 + 2xy 5 + 6xy 4 + 12xy 3 + 12xy 2 + 6xy 

+ 2x + y6 + 2y5 + 4y4 + 6y3 + 4y2 + 2y + 1. (32) 

Figure 5 illustrates 4 isomers (RG isomers) of  x4y O, which indicates 4 single 
par-bonds but no double par-bonds. These reaction graphs (RGs) correspond to well- 
known reactions. Their names and conventional diagrams are also shown. 

RG r e a c t i o n  name  reac t i on  d i a g r a m  
¢ ........ 

a d d i t i o n  > 

Ret ro -  D i e t s - A l d e r  

r e a c t i o n  

F_.3,3] S i g m a t  rap ic 
r e a c t  i on 

1:1,5:] S i g m c t t r o p i c  

r e a c t i o n  

Fig. 5. RGs based on 6 and the corresponding reaction diagrams. 
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5. A detailed enumeration 

Equation (23) indicates the availability of  a more detailed enumeration than 
those described in the previous sections. Since we have reported applications of  this 
equation to the enumeration of compounds [11], here we deal with an application to 
the enumeration of reactions. 

Example 6 (The RCGs based on the parent RG 3). 

The parent RG 3 has three orbits as obtained in example 1, all of  which are 
associated with C2(/C1). Suppose that A = {1, 2, 3, 4, 5, 6} and X = {C, N, O}. We 
adopt the following weights in accord with the OMVs of the orbits: 

Wl(C)=  1, w l ( N ) = x ,  w l ( O ) = 0  fo rA  1= {1,5}, 

and 
w2(C) = 1, w2(N ) = x ,  w2(O) = y  

w3(C ) = 1, w3(N ) = x ,  w3(O) = y  

for A 2 = {2, 6}, 

for A 3 = {3,4}, 

which afford inventories for the respective orbits. That is to say, 

and 

S(d l) = 1 + X a for A l , (33) 

S(f )= l + x d + y  a for A 2, (34) 

s(a 3)= l + x d + y d  for A 3. (35) 

Table 7 

Unit subduced cycle indices for the C 2 group 

$ c: $ C2 

c2(/C1) ~ s2 
C2(/c 2 ) s I 5" 1 
Z~= I mji 1/2 1/2 

Since all of  the orbits are subject to C2(/C1), the corresponding row of 
table 7 is used three times but in different ways. Thus, we obtain 

and 

(s2)(1)(s2)(2)(s2)(3) = (1 +x)2(1 + x + y )  4 for C1 (36) 

(S2)(1)($2)(2)(S2) (3) -- (1 +X2)(1 + x 2 + y 2 )  2 for C2,  (37) 
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where the superscripts (1) to (3) denote the three orbits. Since the inverse of the table 
of marks for the C 2 group is 

2 0 -1 1)  = (__1/2 0 ) ,  (38, 
1/2 1 

eq. (23) yields an isomer-counting matrix: 

1 

x 
x 2 

x 3 

x 4 

x 5 

x 6 

Y 
xy 
x2y  

x3y  

x4y  

xSy  

C1 C2 

1 1 
6 0 

15 3 
2O 0 
15 3 

6 0 
1 1 
4 0 

20 0 
40 0 
4O 0 
20 0 

4 0 

1 / 2  
- 1 / 2  ~ ) -  

C1 C2 

0 1 
3 0 
6 3 

10 0 
6 3 
3 0 
0 1 
2 0 

10 0 
2O 0 
2O 0 
10 0 

2 0 

(39) 

where the first matrix of the left-hand side collects the coefficients obtained by the 
expansion of eqs. (36) and (37). The results of the other weights are abbreviated. 

The number at the intersection of column C l and row x (i.e. CsN) in the last 
matrix is in agreement with the presence of three isomers (fig. 6). The two isomers 
having C50 correspond to the number at the intersection of column C~ and row y. 

C5N 

Fig. 6. Selected RCGs based on 3. 
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6. Conclusion 

A novel enumeration of organic reactions, in which obligatory minimum valencies 
(OMVs) of a parent reaction graph are explicitly considered, is accomplished by 
using coset representations. P61ya's theorem is thus generalized to the form that 
allows us to enumerate isomers under the restriction of OMVs. Another method of 
enumeration is based on novel concepts such as unit subduced cycle index and 
subduced cycle index, both of which also stem from the coset representation. These 
approaches are di fferent in their construction of cycle indices (CIs), which are represented 
by UCI (unit cyle index) ---) CI for the former approach and by USCI (unit subduced 
cycle index) ---) SCI (subduced cycle index) ---) CI for the latter approach. 
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